

INTRODUCTORY PRESENTATION

MADE IN WALES

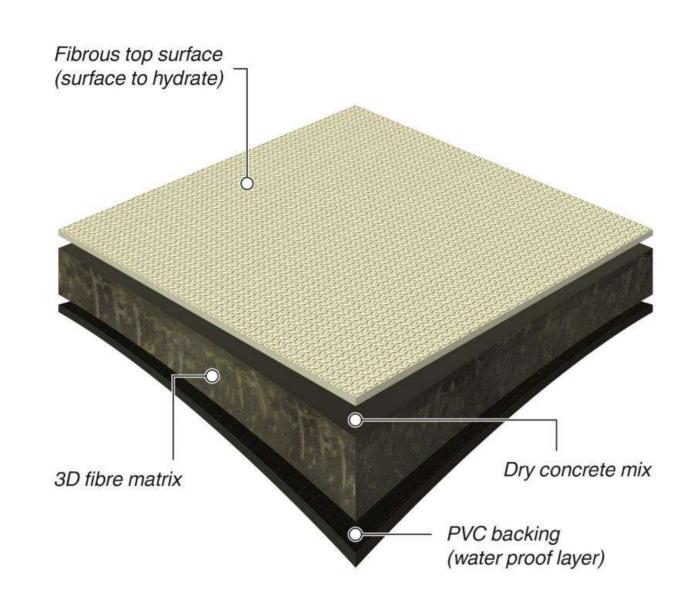
INTRODUCTION

PHILL GREER UK & NA BUSINESS DEVELOPMENT MANAGER

Mobile: +44 (0)7894 520 304 Office: +44 (0)345 680 1908

Email: phill.greer@concretecanvas.com

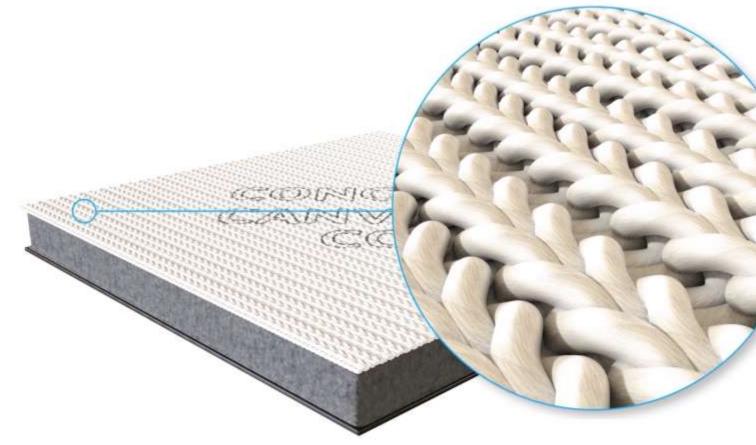
PRESENTER



CONCRETE CANVAS® (CC)

A flexible concrete filled geosynthetic that hardens when hydrated to form a thin, durable waterproof concrete layer. Used for **erosion control** applications.

- Fibrous hydrophilic top surface
- Reinforcing fibre matrix
- Dry concrete mix
- Water impermeable PVC rear surface



CONCRETE CANVAS® (CC)

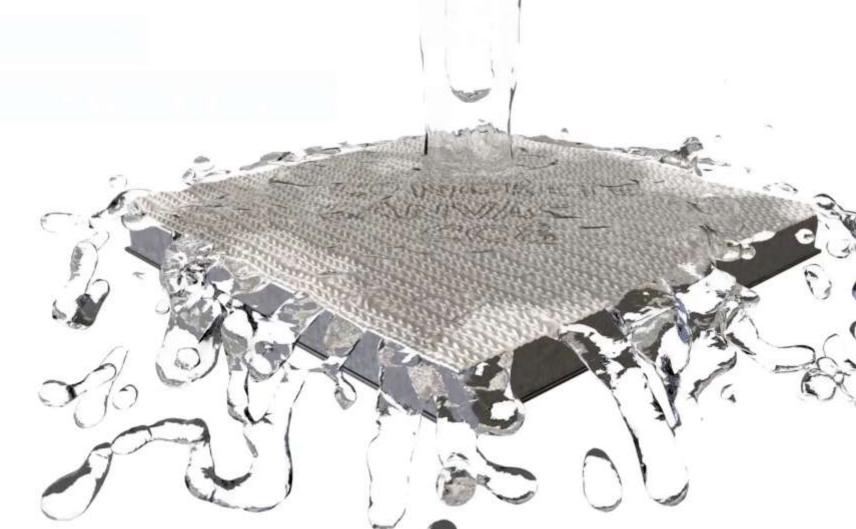
A flexible concrete filled geosynthetic that hardens when hydrated to form a thin, durable waterproof concrete layer. Used for **erosion control** applications.

- Fibrous hydrophilic top surface
- Reinforcing fibre matrix
- Dry concrete mix
- Water impermeable PVC rear surface

CONCRETE CANVAS® (CC)

A flexible concrete filled geosynthetic that hardens when hydrated to form a thin, durable waterproof concrete layer. Used for **erosion control** applications.

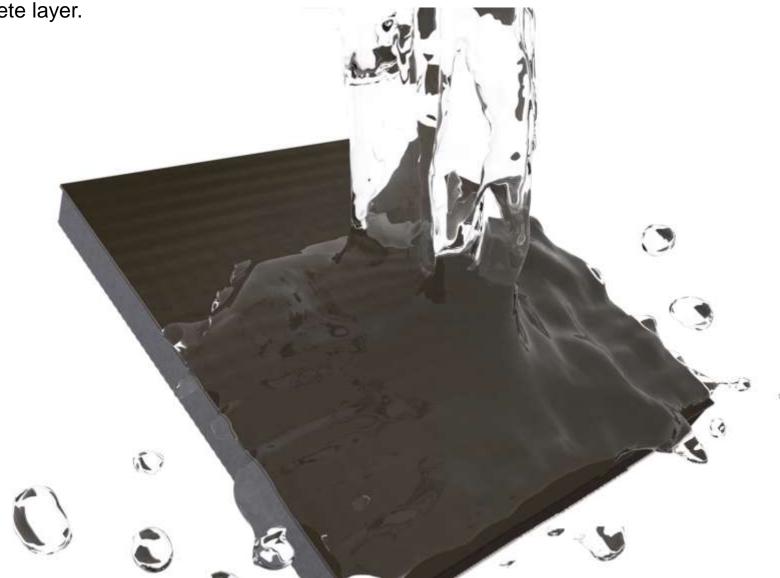
- Fibrous hydrophilic top surface
- Reinforcing fibre matrix
- Dry concrete mix
- Water impermeable PVC rear surface


CONCRETE CANVAS® (CC) AND CC HYDRO™ (CCH) MATERIAL INTRODUCTION

CONCRETE CANVAS® (CC)

A flexible concrete filled geosynthetic that hardens when hydrated to form a thin, durable waterproof concrete layer. Used for **erosion control** applications.

- Fibrous hydrophilic top surface
- Reinforcing fibre matrix
- Dry concrete mix
- Water impermeable PVC rear surface



CONCRETE CANVAS® (CC)

A flexible concrete filled geosynthetic that hardens when hydrated to form a thin, durable waterproof concrete layer. Used for **erosion control** applications.

- Fibrous hydrophilic top surface
- Reinforcing fibre matrix
- Dry concrete mix
- Water impermeable PVC rear surface

2005
INCORPORATION OF
CONCRETE CANVAS
LTD

The company was officially incorporated in September 2005 with the aim of commercialising the inflatable concrete shelter concept.

2004

2007
COMPANY
RELOCATION
TO SOUTH WALES

In 2007 the company relocated from its original development site in Northampton to Pontypridd in South Wales.

2005

2009
VOLUME
PRODUCTION
STARTS OF
CONCRETE
CANVAS MATERIAL

Following the development and commissioning of bespoke production machinery, commercial volume production of Concrete Canvas® began in 2009.

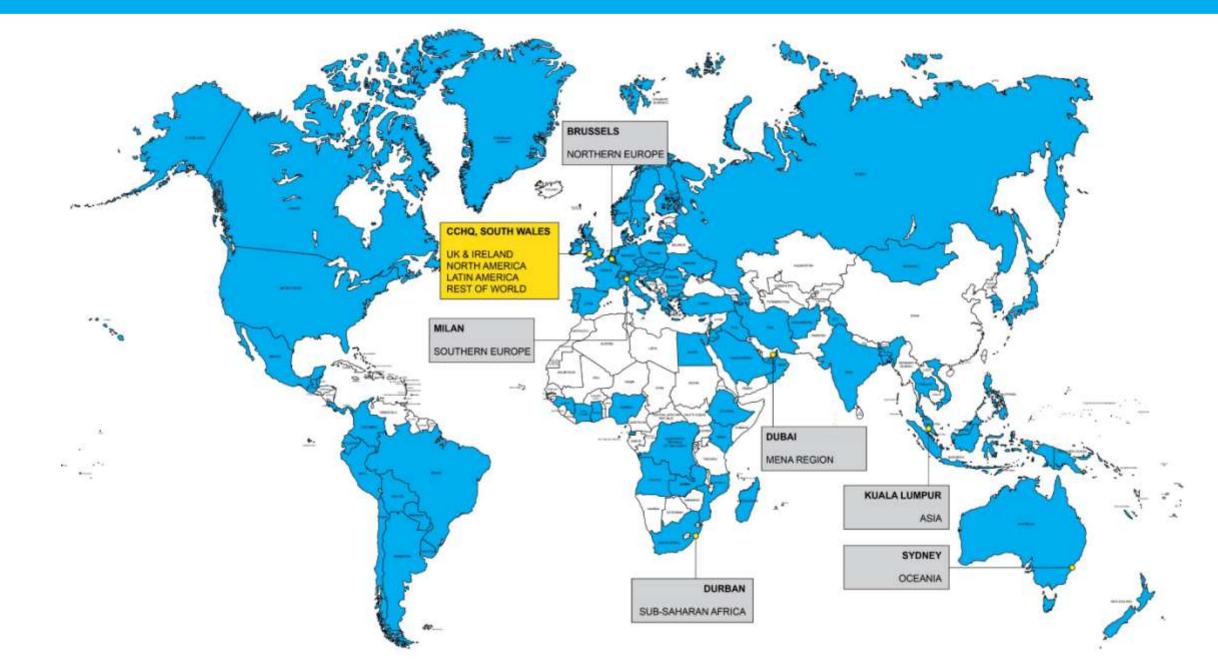
This coincided with the switch of focus from the shelter product to the Concrete Canvas® material as an erosion control product.

2007

2004

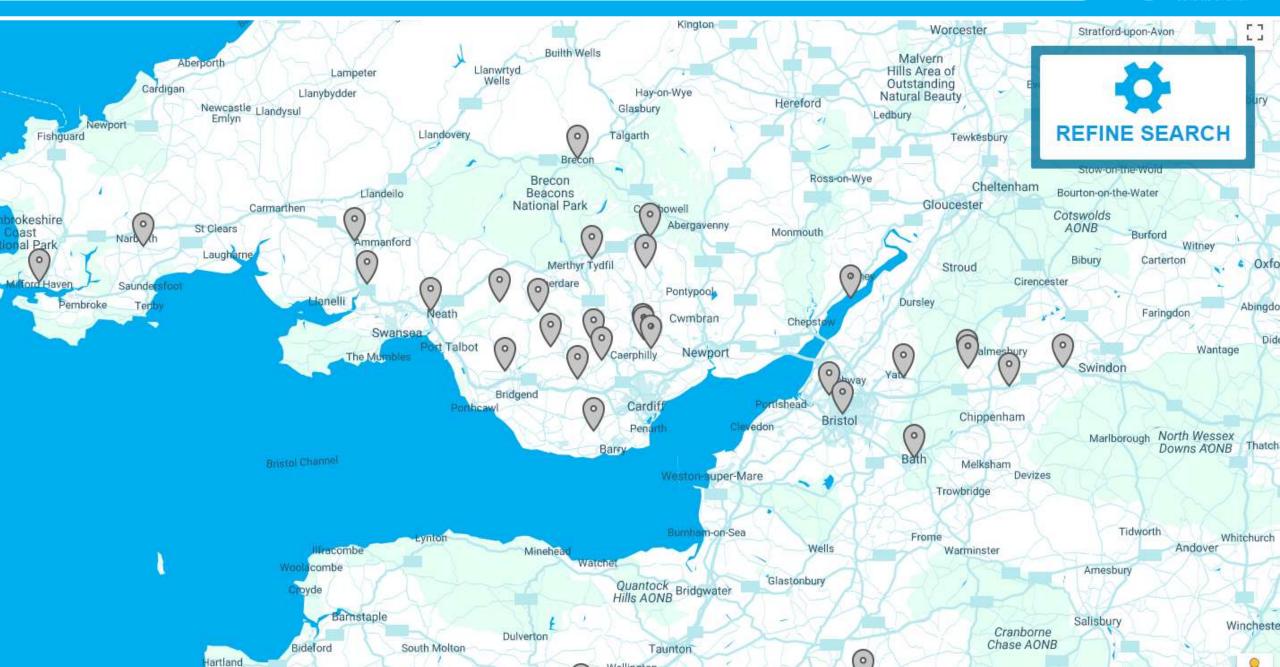


2018 PURCHASE OF NEW HEADQUARTERS SITE


In 2018, Concrete Canvas Ltd secured its future operational needs with the purchase of a new 86'000sqft site in South Wales.

The relocation will allow the company to quadruple it's manufacturing capacity as well as providing a suite of state-of-the-art laboratories to support our extensive research and development programme.

2005

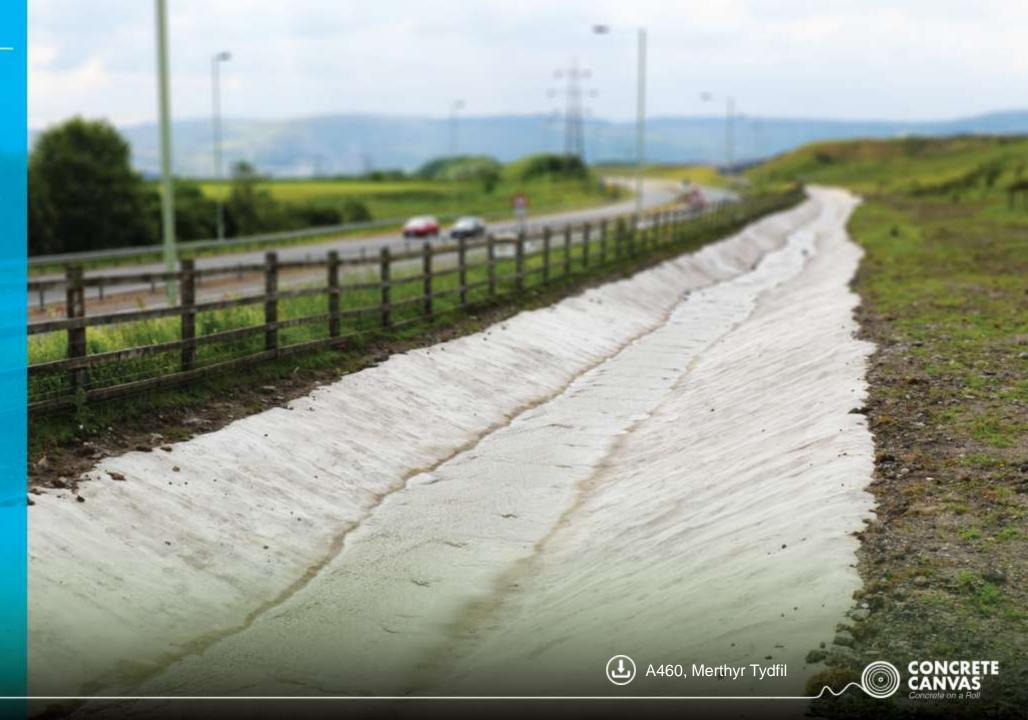

INTERACTIVE PROJECT MAP

INTERACTIVE PROJECT MAP

KEY BENEFITS

Speed of install reduces line possession and H&S risk.

CC's design life and robustness meet critical national rail standards.



KEY BENEFITS

Speed of install reduces lane possession and H&S risk.

CC's design life and robustness meet critical Highways standards.

KEY BENEFITS

CC and CC HydroTM offer excellent hydrocarbon resistance.

Speed of install allow for reduced permit requirements.

Installation methods are conducive to working in the tight confines of sensitive infrastructure.

KEY BENEFITS

CC doesn't require specialist contractors allowing local authorities to use their own maintenance teams.

CC allows for the cost effective reinstatement of existing assets rather than costly new builds.

KEY BENEFITS

Remediate existing assets rather than costly new build.

Allows swift operational return of assets.

KEY BENEFITS

High chemical resistance for conveyance of contaminated waters.

Low logistical footprint for remote areas.

Canal & River Trust

nationalgrid

UK EXAMPLE CONSULTANTS AND CONTRACTORS

PRE-DESIGN STAGE

- UK regional and international support
- Certified CPD presentations
- Project meetings
- Site visits
- Proof of principle trials

DESIGN STAGE

- Standard detail CAD portfolio
- Project specific GA drawings
- Non-indemnified design advice
- Hydraulic guidance / Wind uplift calculator
- BOQ and ancillary calculations
- Test certificates
- Drop-In-Specifications

INSTALLATION STAGE

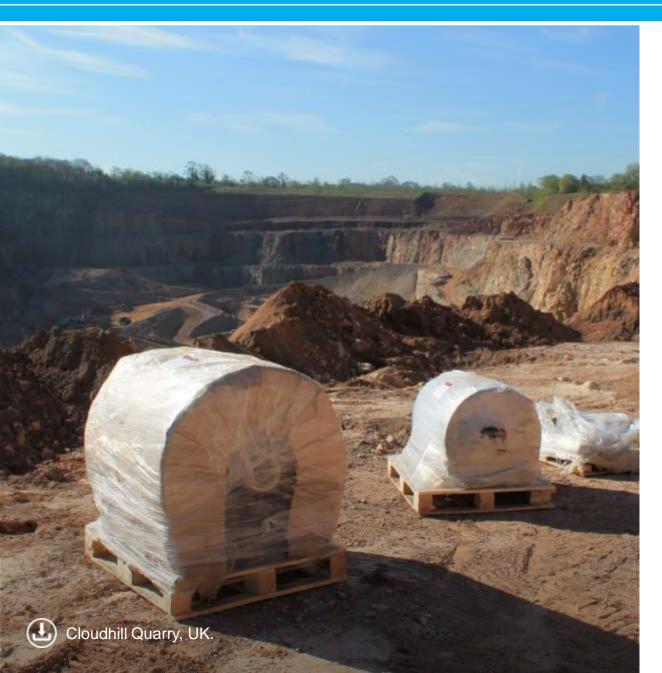
- Toolbox talks
- Installation guides
- Installation equipment supply

AFTER CARE

- Case study
- Maintenance advice
- Repair advice

CONCRETE CANVAS®

CC IS AVAILABLE IN THREE DELIVERY FORMATS


CC Bulk RollsUp to 200sqm of concrete on a single pallet

CC Batched Rolls

Man portable batched rolls of 5 or 10sqm
CC5 and CC8 only

CC Wide RollsAvailable in 2.2m and 3.3m widths

BULK ROLLS

- Suitable for major works
- Material efficient (zero waste)
- Cost efficient
- Transport efficient
- Staggered production and delivery for specific projects

BATCHED ROLLS

- Suitable for minor works
- Use on restricted access sites
- Do not require plant equipment
- Ideal for stocking for reactive works
- Man portable

BULK ROLLS

- Suitable for major works
- Material efficient (zero waste)
- Cost efficient
- Transport efficient
- Staggered production and delivery for specific projects

BATCHED ROLLS

- Suitable for minor works
- Use on restricted access sites
- Do not require plant equipment
- Ideal for stocking for reactive works
- Man portable

WIDE ROLLS

- Suitable for major works
- Increased installation rates
- Reduced jointing
- Reduced ancillary requirement
- Ideal for straight uniform channels of constant profile

STORAGE

- All three formats are supplied palletised and in shrink wrapped plastic packaging
- CC has a shelf life of 2 years when stored correctly
- Rolls should be stored under cover in dry conditions away from direct sunlight and in the manufacturer's sealed packaging

WIDE ROLLS

- Suitable for major works
- Increased installation rates
- Reduced jointing
- Reduced ancillary requirement
- Ideal for straight uniform channels of constant profile

STORAGE

- All three formats are supplied palletised and in shrink wrapped plastic packaging
- CC has a shelf life of 2 years when stored correctly
- Rolls should be stored under cover in dry conditions away from direct sunlight and in the manufacturer's sealed packaging

CC PHYSICAL PROPERTIES

Product	Nominal Thickness (mm)	Batched Roll Size (m²)	Bulk Roll Size (m²)	Roll Width (m)
CC5™	5	10	200	1.0
СС8™	8	5	125	1.1
CC13™	13	N/A	80	1.1

CC THICKNESS SPECIFICATION

CC5™

- Reinstating existing concrete assets
- Un-trafficked bunds and slopes for weathering protection
- Un-trafficked weed suppression

CC8TM

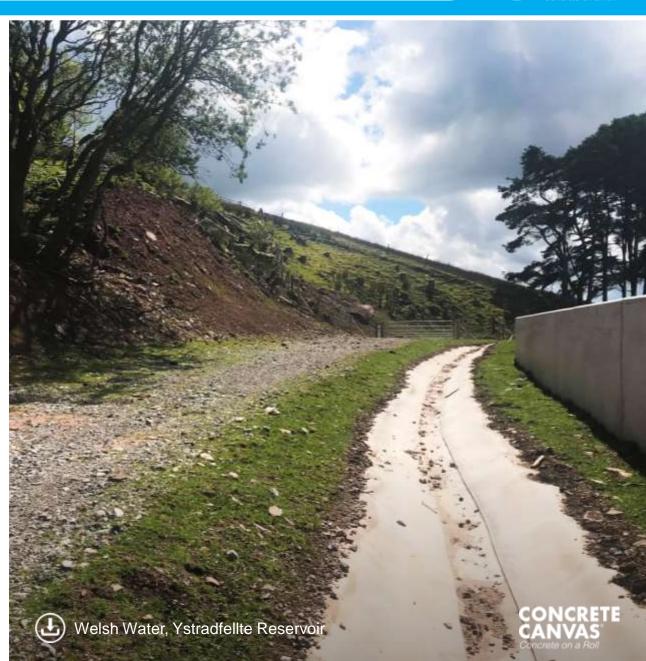
- Soil substrate
- Episodic pedestrian trafficking

CC13TM

- Flow rates greater than 8.6m/s
- Projects where CC is likely to bear repeated loading (i.e. regular pedestrian trafficking)
- Applications where an increased mass is advantageous (i.e. negative buoyancy)
- Applications requiring impact protection

CC THICKNESS SPECIFICATION

CC5TM


- Reinstating existing concrete assets
- Un-trafficked bunds and slopes for weathering protection
- Un-trafficked weed suppression

CC8TM

- Soil substrate
- Episodic pedestrian trafficking

CC13TM

- Flow rates greater than 8.6m/s
- Projects where CC is likely to bear repeated loading (i.e. regular pedestrian trafficking)
- Applications where an increased mass is advantageous (i.e. negative buoyancy)
- Applications requiring impact protection

CC THICKNESS SPECIFICATION

CC5TM


- Reinstating existing concrete assets
- Un-trafficked bunds and slopes for weathering protection
- Un-trafficked weed suppression

CC8TM

- Soil substrate
- Episodic pedestrian trafficking

CC13[™]

- Flow rates greater than 8.6m/s
- Projects where CC is likely to bear repeated loading (i.e. regular pedestrian trafficking)
- Applications where an increased mass is advantageous (i.e. negative buoyancy)
- Applications requiring impact protection

PRE-SET CONCRETE CANVAS PROPERTIES

	Test Method	Unit	Typical Values			
		Offic	CC5™	CC8™	CC13 [™]	
Physical Properties						
Thickness	BS EN 1849-2	mm	5	8	13	
Batched Roll Sizes		m	1.0 x 10	1.1 x 4.55	N/A	
Area of CC per Batched Roll		m^2	10	5	N/A	
Bulk Roll Sizes		m^2	1.0 x 200	1.1 x 114	1.1 x 73	
Area of CC per Bulk Roll		m^2	200	125	80	
Mass per Unit Area	BS EN 1849-2	kg/m²	7	12	19	
Density	BS EN 1849-2	kg/m³		1430 - 1540		
Density Increase on Curing		% increase		30 - 35		

Other Properties					
Peel Strength (strength of internal linking fibres)	BS EN ISO 13426-2	kN/m	4.0	4.5	5.0
Embodied CO2 (cradle to gate for CC8TM vs poured concrete)	ISO 14040	% Saving		45	
Working Time from Hydration (refer to the CC Hydration Guide)		Hours		1 to 2	

POST-SET CONCRETE CANVAS PROPERTIES

(Hydrated by full immersion in accordance with ASTM D8030. Water:GCCM ratio of 0.33)

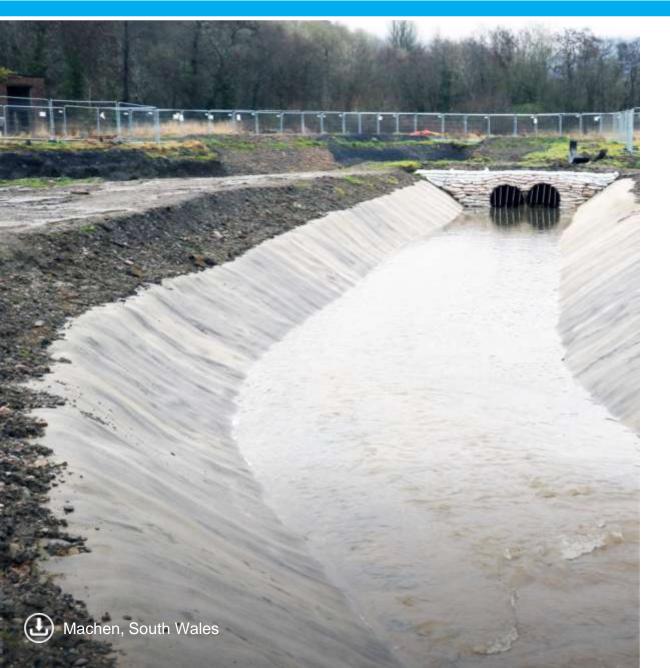
	Took Makk ad	Unit	Typical Values		
	Test Method	Onit	CC5 [™]	CC8 [™]	CC13 [™]
Mechanical Performance					
Compressive Strength of Cementitious Mix +					
- 24 Hour	BS EN 12390-3	MPa		50	
- 28 Day	BS EN 12390-3	MPa		80	
Flexural Strength at 24 Hours from Hydration					
- Initial Break (MD)	ASTM D8058	MPa		>4.0	
- Initial Break (MD)	ASTM D8058	N/m	750	1750	5000
- Final Break (MD)	ASTM D8058	MPa	>10	>6	>6
Static Puncture Resistance (mean ultimate puncture force)	BS EN ISO 12236	kN	2.0	4.0	4.0
Dynamic Puncture Resistance (depth of perforation)	BS EN ISO 13433	mm		0*	
Pyramid Puncture Resistance	BS EN ISO 14574	kN	4	7	12.5
Differential Ground Movement (strain to PVC failure - min. 50mm per 1m width)		%	>5	>5	>2
Coefficient of Thermal Expansion		α(mm/mk)	0	.012 - 0.01	5

⁺ Cube testing at Water:Powder ratio of 0.3 to correspond to GCCM hydration by immersion to ASTM D8030

^{*} Probe did not make a full penetration through the product, therefore the depth of penetration is zero.

POST-SET CONCRETE CANVAS PROPERTIES

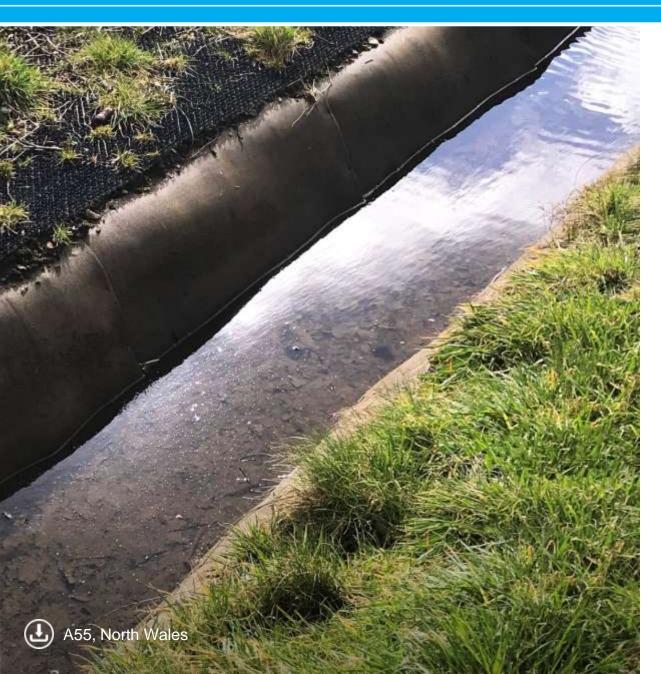
(Hydrated by full immersion in accordance with ASTM D8030. Water:GCCM ratio of 0.33)


	To of Modle and	11	Typical Values			
	Test Method	Unit	CC5™	CC8™	CC13 [™]	
Environmental Durability (minimum 120 year	expected life)					
Freeze - Thaw Resistance (retained Initial Flexural Strength after 250 cycles)	BS EN 12467	%	95			
Weathering Resistance (refer to CC Age Certification)	BS EN 12467	-	Passed			
Chemical Resistance (refer to CC Chemical Resistance)	BS EN 14414	-	Passed			
Root Resistance (refer to CC Root Resistance Testing)	DD CEN/TS 14416	-	Passed			
Reaction to Fire (refer to CC Fire Certification)	BS EN 13501	-	Euroclass B-s1, d0			

Hydraulic Performance					
Abrasion Resistance (cementitious barrier depth of wear)	ASTM C1353	mm/1000 cycles		0.2	
Manning's Roughness Coefficient	ASTM D6460	n	0.011		
Recommended Permissible Velocity (intermediate fixings may be required - contact CC Ltd)		m/s	N/A	<8.6	>8.6

CC CHEMICAL RESISTANCE

- BS EN 14414:2004 'Geosynthetics'. Screening test method for determining chemical resistance for landfill applications
- Immersion for 56 days at an elevated temperature of 50°C
- Following tests, samples subject to ASTM D8058-17 3-point bend test and flexural strength compared to control samples


		CC5™	CC8™	CC13™
Acid (pH 1.0) (0.5% Sulfuric Acid)	Mean Strength (MPa)	6.07	4.45	5.57
	Retained Strength (%)	107%	115%	111%
Alkaline (pH 13.0)	Mean Strength (MPa)	6.92	3.84	4.62
	Retained Strength (%)	121%	99%	92%
Hydrocarbon (35% diesel, 35% paraffin & 30% lubricating oil)	Mean Strength (MPa)	9.93	5.86	8.31
	Retained Strength (%)	115%	99%	103%

⚠ CC Chemical Resistance – BS EN 14414:2004 Report

CC Sulphate Resistance

DESIGN LIFE

Concrete Canvas® is BBA certified with a durability in excess of 120 years where CC is used for erosion control. The certificate relates to channel lining, slope protection, bund lining, remediation and culvert lining.

Key factors that were assessed;

- Durability
- Climatic performance
- Structural performance

CE Mark / ISO 9001

CC is CE marked in accordance with ETA 19/0086 and Concrete Canvas Ltd is ISO 9001:2015 certified.


CHANNEL LINING

SLOPE PROTECTION
BUND LINING
CONCRETE REMEDIATION
WEED SUPPRESSION

Rapid lining of earth channels, ditches, gullies, canals and spillways.

Compared to conventional concrete lining:

- Faster
- Easier
- Less expensive
- Does not require specialist contractors or equipment
- Environmentally friendlier

CHANNEL LINING

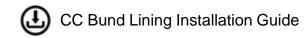
SLOPE PROTECTION

BUND LINING
CONCRETE REMEDIATION
WEED SUPPRESSION

Hard armoured facing for slopes to mitigate weathering erosion and water ingress.

Compared to shotcrete:

- Typically faster to install
- More cost effective
- Does not require specialist contractors or equipment
- Eliminates the risk associated with rebound or debris


CHANNEL LINING
SLOPE PROTECTION

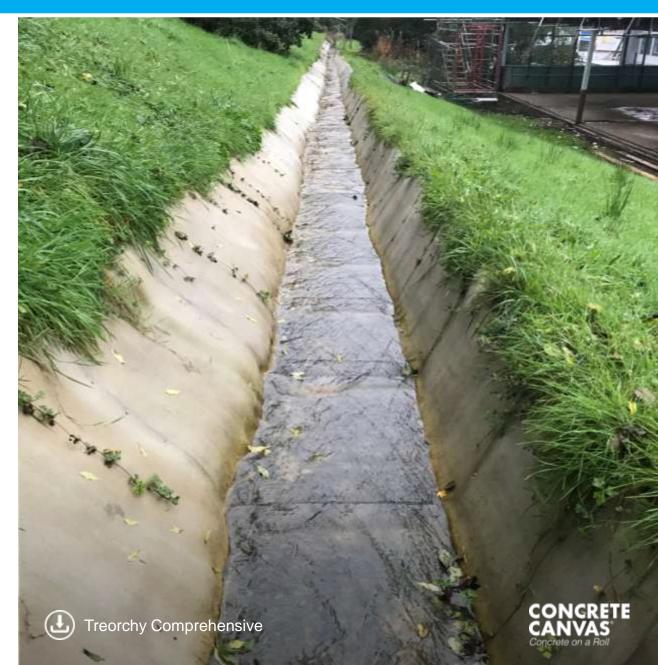
BUND LINING

CONCRETE REMEDIATION
WEED SUPPRESSION

Encapsulation of typically trapezoidal earth or clay secondary containment berms.

- Provides protection against weathering erosion
- Effective weed suppression
- Protects against burrowing animals
- Reduce maintenance costs
- Provide additional level of impermeability

CHANNEL LINING
SLOPE PROTECTION
BUND LINING


CONCRETE REMEDIATION

WEED SUPPRESSION

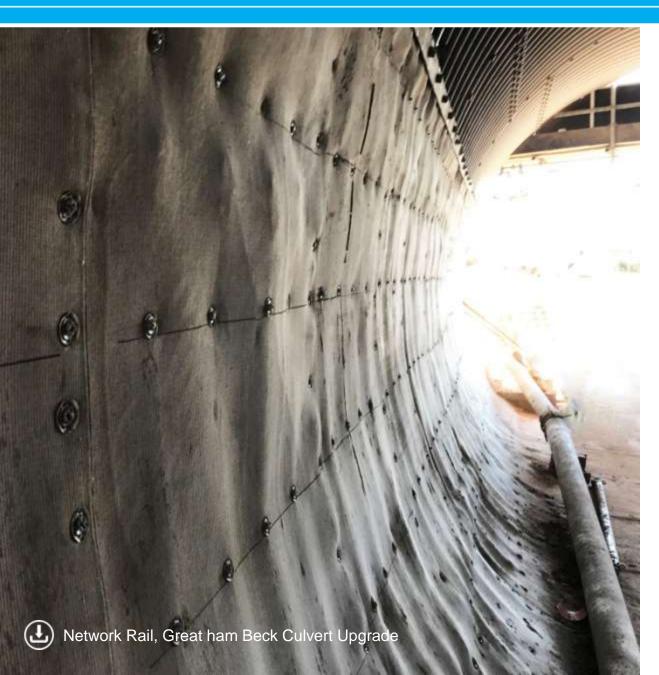
Reinstatement of existing assets, typically repairing cracked and dilapidated pre-cast concrete sections.

Compared to injection resins, in-situ pour or slab replacement:

- Swift return of asset to operation
- Maintain internal volume of structure to preserve capacity

CHANNEL LINING
SLOPE PROTECTION
BUND LINING
CONCRETE REMEDIATION

WEED SUPPRESSION


Rapidly installed, effective vegetation control typically installed along road or rail structures, under pipe tracks and across easement areas of security fencing.

Compared to geotextiles and aggregate:

- Durable
- Reduce maintenance
- Protects against burrowing animals
- Effective against invasive species

OTHER

- Culvert Repair
- Gabion Reinforcement
- Temporary Works
- Pipe Protection
- Mining Vent / Blast Walls
- Cable Covering / Protection

RAPID INSTALL

Up to 10x faster than conventional concrete Up to 200 linear metres / hour

EASE OF USE

Minimal training required Low logistical footprint Install in adverse conditions

LOWER PROJECT COSTS

More cost effective than any other conventional concrete solution

ECO FRIENDLY

Material savings of up to 90%
Transport efficient
Low wash out rate, low alkaline reserve
Embodied CO₂ savings

4 KEY USER BENEFITS

VALE OF GLAMORGAN / CAPITA
CHANNEL LINING
A4226, WALES
2018

ROAD 2,250SQM CC8TM BULK

NEW ROAD BYPASS CREST DRAINAGE

600 linear metre length channel along eastern crest of road cutting embankment.

- Enabled continued construction of road, preventing flooding
- Maintained integrity of cutting.
- Quicker to install than pre-cast concrete option
- 2250SQM installed in less than 4 days

5 Mile Lane, Channel Lining

RAPID INSTALL

Up to 10x faster than conventional concrete Up to 200 linear metres / hour

EASE OF USE

Minimal training required Low logistical footprint Install in adverse conditions

LOWER PROJECT COSTS

More cost effective than any other conventional concrete solution

ECO FRIENDLY

Material savings of up to 90%
Transport efficient
Low wash out rate, low alkaline reserve
Embodied CO₂ savings

4 KEY USER BENEFITS

LOW LOGISTICAL FOOTPRINT

1 CC Bulk Roll provides the equivalent coverage area of two 17T ready-mix cement trucks

- Reduced vehicle movement
- Reduced transportation CO₂
- Reduced H&S implications

KEY BENEFITS

INSTALL IN ADVERSE CONDITIONS

CCBC / JD CIVILS
CHANNEL LINING
BEDWAS, WALES
2011

PUBLIC WORKS

Scour protection to a series of spoil tip drainage channels at a former colliery in South Wales.

- Install in wet weather conditions
- Reduce programme disruption
- 2 hour working time (UK)

RAPID INSTALL

Up to 10x faster than conventional concrete Up to 200 linear metres / hour

EASE OF USE

Minimal training required Low logistical footprint Install in adverse conditions

LOWER PROJECT COSTS

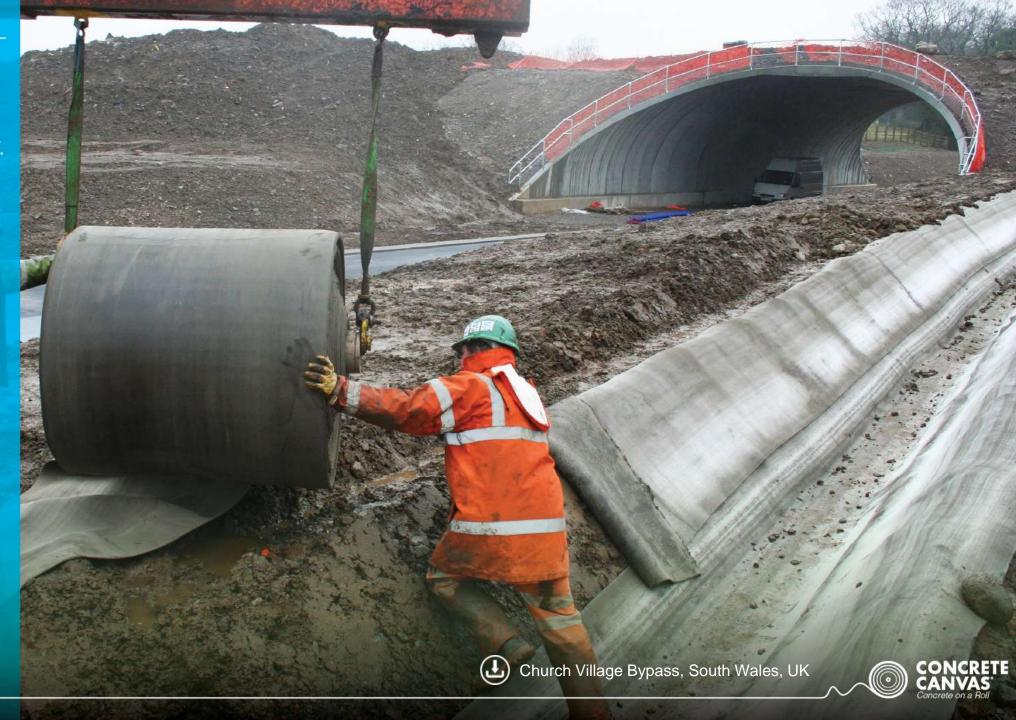
More cost effective than any other conventional concrete solution

ECO FRIENDLY

Material savings of up to 90%
Transport efficient
Low wash out rate, low alkaline reserve
Embodied CO₂ savings

4 KEY USER BENEFITS

KEY BENEFITS


LOWER PROJECT COSTS

COSTAIN / WELSH GOV.
CHANNEL LINING
CHURCH VILLAGE,
SOUTH WALES
2010

ROAD

Scour protection to crest drainage as part of Bypass construction scheme in South Wales.

- Alternative to grouted rip-rap
- Installed in three hours compared to three days
- Environment Agency approval

RAPID INSTALL

Up to 10x faster than conventional concrete Up to 200 linear metres / hour

EASE OF USE

Minimal training required Low logistical footprint Install in adverse conditions

LOWER PROJECT COSTS

More cost effective than any other conventional concrete solution

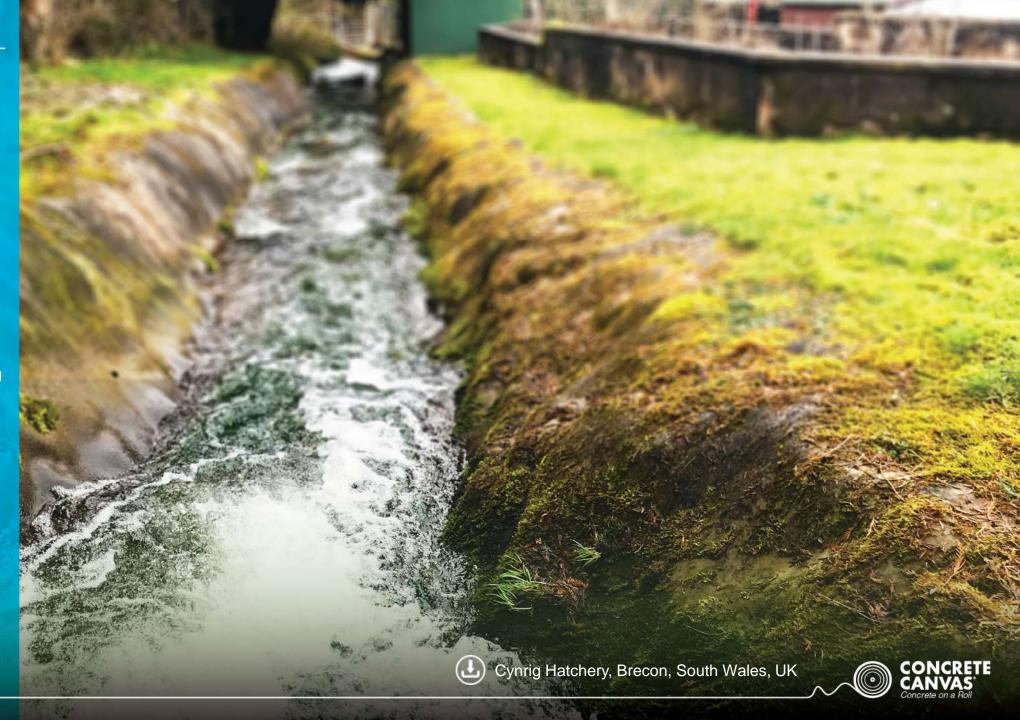
ECO FRIENDLY

Material savings of up to 90%
Transport efficient
Low wash out rate, low alkaline reserve
Embodied CO₂ savings

4 KEY USER BENEFITS

KEY BENEFITS

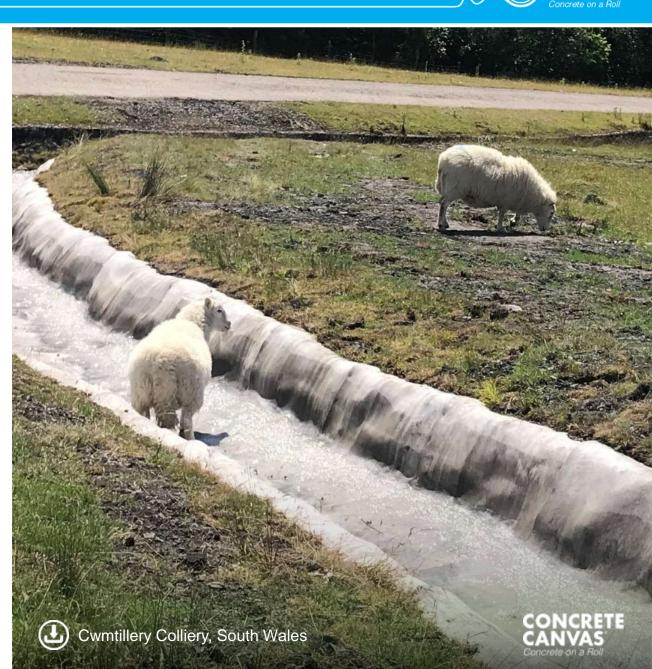
ECO-FRIENDLY


NRW
CHANNEL LINING
BRECON, WALES
2010

PUBLIC WORKS

Reformation of a leat taking run-off water from a salmon hatchery in South Wales.

- Attracts naturally occurring bio-mass
- Organic contours
- Safely discharged into adjacent river
- Low embodied carbon



LIFE CYCLE ASSESSMENT (LCA)

- Independent Life Cycle Assessment of the Global Warming Potential (GWP) of CC8TM was undertaken independently by Ricardo Energy and Environment (REE)
- CC8[™] was compared to 150mm of ST4 (20N) poured concrete for a hypothetical channel, 200km from factory and 20km from ST4 batching plant
- 'Cradle to Grave' assessment included Upstream (sourcing raw materials), Core (manufacture), Transport, Installation, Use, Removal and End of Life
- CC8TM has a GWP that is 55% lower than the ST4 poured concrete alternative
- Sensitivity analysis also shows that CC8TM has a lower GWP than 100mm of poured concrete
- Concrete Canvas and REE have created a tool for calculating the project specific GWP for all CC products and comparing to the ST4 poured concrete alternative.

LIFE CYCLE ASSESSMENT (LCA)

- Independent Life Cycle Assessment of the Global Warming Potential (GWP) of CC8TM was undertaken independently by Ricardo Energy and Environment (REE)
- CC8TM was compared to 150mm of ST4 (20N) poured concrete for a hypothetical channel, 200km from factory and 20km from ST4 batching plant
- 'Cradle to Grave' assessment included Upstream (sourcing raw materials), Core (manufacture), Transport, Installation, Use, Removal and End of Life
- CC8[™] has a GWP that is 55% lower than the ST4 poured concrete alternative
- Sensitivity analysis also shows that CC8[™] has a lower GWP than 100mm of poured concrete
- Concrete Canvas and REE have created a tool for calculating the project specific GWP for all CC products and comparing to the ST4 poured concrete alternative.

CASE STUDIES

COAL AUTHORITY
CHANNEL LINING
GLYNCORRWG, WALES
2016

UTILITIES1,640SQM CC8TM BULK

GLYNCORRWG WATER TREATMENT SITE

Series of cascading drainage channels to treat and discharge orange ochre.

CC used to replace the failed LLDPE a geotextile liner that had been installed five years earlier.

- Chemically resistance to contaminants
- Able to be installed in inclement weather
- Long term durability

COAL AUTHORITY
CHANNEL LINING
GLYNCORRWG, WALES
2016

UTILITIES1,640SQM CC8™ BULK

GLYNCORRWG WATER TREATMENT SITE

Series of cascading drainage channels to treat and discharge orange ochre.

CC used to replace the failed LLDPE a geotextile liner that had been installed five years earlier.

- Chemically resistance to contaminants
- Able to be installed in inclement weather
- Long term durability

COAL AUTHORITY
CHANNEL LINING
GLYNCORRWG, WALES
2016

UTILITIES1,640SQM CC8™ BULK

GLYNCORRWG WATER TREATMENT SITE

Series of cascading drainage channels to treat and discharge orange ochre.

CC used to replace the failed LLDPE a geotextile liner that had been installed five years earlier.

- Chemically resistance to contaminants
- Able to be installed in inclement weather
- Long term durability

NATURAL RESOURCES WALES
SLOPE PROTECTION
PONTYPRIDD, WALES
2017

PUBLIC WORKS
1,040SQM CC13TM BULK

RIVER TAFF BANK PROTECTION

- Replacement of rip-rap
- Geotextile sub-layer
- Framework contractors
- Specified by environment body

NATURAL RESOURCES WALES
SLOPE PROTECTION
PONTYPRIDD, WALES
2017

PUBLIC WORKS 1,040SQM CC13™ BULK

RIVER TAFF BANK PROTECTION

- Replacement of rip-rap
- Geotextile sub-layer
- Framework contractors
- Specified by environment body

SLOPE PROTECTION
PONTYPRIDD, WALES
2017

PUBLIC WORKS
1,040SQM CC13TM BULK

RIVER TAFF BANK PROTECTION

- Replacement of rip-rap
- Geotextile sub-layer
- Framework contractors
- Specified by environment body

NATURAL RESOURCES WALES
SLOPE PROTECTION
PONTYPRIDD, WALES
2017

PUBLIC WORKS
1,040SQM CC13TM BULK

RIVER TAFF BANK PROTECTION

- Replacement of rip-rap
- Geotextile sub-layer
- Framework contractors
- Specified by environment body

NATURAL RESOURCES WALES
SLOPE PROTECTION
PONTYPRIDD, WALES
2017

PUBLIC WORKS
1,040SQM CC13TM BULK

RIVER TAFF BANK PROTECTION

- Replacement of rip-rap
- Geotextile sub-layer
- Framework contractors
- Specified by environment body

SUMMARY

CONCRETE CANVAS® (CC)EROSION CONTROL

- Used for the rapid lining of channels, slope protection, bund lining, concrete remediation, culvert repair and weed suppression.
- Up to 10 times quicker than traditional concrete solutions.
- Easier to install, requiring minimum training and no specialist equipment.
- More cost effective than any other concrete solution.
- Environmental advantages
- Provides long term excellent scour and chemical resistance. 120 year design life.

CC / CC HYDRO SPECIFICATION

CONCRETE CANVAS LTD

COWBRIDGE RD,
TALBOT GREEN,
PONTYCLUN
CF72 8HL
UNITED KINGDOM

info@concretecanvas.com www.concretecanvas.com

QUESTIONS?

